Asymptotic expansions for the maximum of random number of random variables

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Asymptotic Distribution of the Sum of a Random Number of Random Variables.

then under appropriate conditions on the Xj it follows from the central limit theorem that the distribution of F will be nearly normal. In many cases of practical importance, however, the number N is itself a r. v., and when this is so the situation is more complex. We shall consider the case in which the Xj (j = 1, 2, • • • ) are independent r. v.'s with the same distribution function (d. f.) ...

متن کامل

On the Ratio of Rice Random Variables

 The ratio of independent random variables arises in many applied problems. In this article, the distribution of the ratio X/Y is studied, when X and Y are independent Rice random variables. Ratios of such random variable have extensive applications in the analysis of noises of communication systems. The exact forms of probability density function (PDF), cumulative distribution function (CDF) a...

متن کامل

Estimation of the Survival Function for Negatively Dependent Random Variables

Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed

متن کامل

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

متن کامل

Asymptotic Expansions for the Laplace Approximations of Sums of Banach Space-valued Random Variables

Let Xi, i ∈ N, be i.i.d. B-valued random variables, where B is a real separable Banach space. Let Φ be a smooth enough mapping from B intoR. An asymptotic evaluation of Zn = E(exp(nΦ( ∑n i=1 Xi/n))), up to a factor (1 + o(1)), has been gotten in Bolthausen [Probab. Theory Related Fields 72 (1986) 305–318] and Kusuoka and Liang [Probab. Theory Related Fields 116 (2000) 221–238]. In this paper, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1994

ISSN: 0304-4149

DOI: 10.1016/0304-4149(94)90047-7